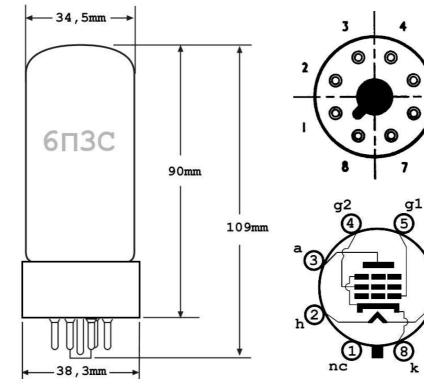
General purpose Tetrode

6п3С

Medium/High gain, Suitable for low frequenxy / AF applications, found mainly in the final output stages in Class A amplifier, Class B amplifier, Class AB amplifier (Audio amplification circuits)

5


nc

6

 \mathcal{I}_h

Russian (Former USSR) Made (Not in production since late 1970'ths) - Beam-Power Tetrode, Indirectly heated catode (terminated internaly with G3) - International Octal base (Type B8-0), Glas cylinder tube / bulb envelope with dome top. Often used for substitution of: 6L6-GB, 5881 o.e.

(6P3C)

General characteristics.		
Туре	6P3S	6P3S-E
Filament voltage, Volt	6.3	6.3
Anode voltage, Volt	250	250
1 st grid voltage, Volt	-14	-14
2 nd grid voltage, Volt	250	250
Туре	6P3S	6P3S-E
Filament (heater) current, mA	900±90	880±40
Anode current, mA	72±18	73±13
2 nd grid current, mA	no more than 9	no more than 6
l st grid reverse current, mkA	£ 3	£ 0.5
Cathode current, mA	no less than 275	-
Output power, W	no less than 5.4	no less than 5.8
Mutual conductance, mA/V	5.2 to 6.8	5.2 to 6.8
Internal resistance, $k\Omega$	25	no more than 65
Inter electrode capacitance, pF:		
input	11±2	11
output	8.2±1.5	6.7
transfer	no more than 1	no more than 1
Operation time, h	³ 1000	³ 5000

General characteristics:

Limited operating values:

Туре	6P3S	6P3S-E
Filament voltage, V	5,7-7	6-6.6
Anode voltage, V	375	250
2 nd grid voltage, V	300	250
Cathode - heater voltage, V	100	90 / -200
Cathode current, mA	-	90
Anode dissipation, W	20	20.5
2 nd grid dissipation, W	2.75	2
Resistance in 1^{st} grid circuit, $k\Omega$	500	150

Operating environmental conditions :

Туре	6P3S	6P3S-E
Acceleration of vibration loads, g	1.5	3
by frequencies, Hz	50	5 to 300
Acceleration of multiple impacts, g	-	12
Acceleration of single impact, g	-	100
Continuos acceleration, g	-	100
Ambient temperature, °C	-60 to +70	-60 to +160
Relative humidity at up to 40°C, %	98	98

Выходной лучевой тетрод

Предназначен для усиления мощности низкой частоты.

Применяется в выходных однотактных и двухтактных каскадах приемников и усилителей низкой частоты, а также как высокочастотный генератор в магнитофонах, передаю-

Баоднал	•	٠	•	•	•	•	٠	٠	•	•	٠	•	٠	٠	٠	•			$11 \pm$	-
Выходная		•	٠	•	•	•	•	٠	٠	•	٠	•	٠	•	•	•			$8,2 \pm$	1,5
Проходная		٠	٠	٠	٠	•	•	•	٠	٠	•	•	٠	•	٠	٠	пе	более	1	

Номинальные электрические данные

Напряжение накала, в	6,3
Напряжение на аноде, в	250
Напряжение на второй сетке, в	250
Напряжение смещения на первой сетке, в	14
Ток накала, ма	900 + 60
Ток в цепи анода, ма	72 ± 14
Ток в цени второй сетки, ма	не более 8
Крутизна характеристики, жа/в	6 ± 0,8
Выходная мощность, отдаваемая при пере-	· _ •,•
менном напряжении на первой сетке 9,8 в	
и сопротивлении нагрузки в дени анода	
2500 ом, вт	5,4
Выходная мощность при напряжении накала	-,.
5,7 8, 8m	не менее 4
Впутреннее сопротивление, кож	22,5
Коэффициент усиления	

Предельно допустимые электрические величныы

Наибольшее	напряжение	накала	. 8				•						7
Наименьшее	напряжение	накала	. 8										5,7
Нанбольшее	напряжение	на анол	Ie.	B									400
паноольшее	напражение	Ha BTOL	ЙО	Ceti	ĸe.	8							300
паноольшая	мощность, ра	ассеявае:	мая	на	an	0.1	ρ.	817	Ł				20.5
Наибольшая	мощность, ра	ссенвае	мая	на	BT	on	ой	CE	TI	e.		m	2,75
Наибольшее	постоянное	напряж	enue	8 M	эж	ΠV	1	281	O	10	ur i	15	2,10
подогрева	телем, в .					~3			,	,			200
Наибольший	TOR VTENKE M	ежлу каз	non	MIT			rr	Iee	ят	NO T	ė	÷	200
мка .	• • • • • • •		~~~~			~~		~~	~			-,	100
Наибольшее	СОППОТИВЛЕН	HO B HOT		Tone	'nŭ	: .	•			1	i.	• v	0.5
панослышее	сопротивлен	не в цег		uepi	30Ŭ	1	cer	ГКІ	1,	А	10	N.	0,5

Таблица 28

Режямы эксплуатации лампы 6ПЗС в однотактном усилителе класса А при катодном смещении

	Реж	Шмы		
Электрические величины	I	II		
Напряжение на аноде, в	250 Не более 0,15 170 14 75 78 5,4 7,2	350 200 Не более 0,15 220 12,5 51 54,5 3 4,6 4500 6,5 11		

Примечание. При применении фиксированного смещения сопротивление в цепи первой сетки не должно превышать 100 ком.

Таблица 29

Режимы эксплуатации лампы 6ПЗС в однотактном усилителе класса А (триодное включение)

	Смещ	епие
Электрические величины	фиксиро- ванное	катодноо
Напряжение на аноде, в	$250 \\ -20,0 \\ - \\ 20,0 \\ 40,0 \\ 44,0 \\ 1700 \\ 4,7 \\ 5000 \\ 1,4 \\ 5,0 \\ 8 \\ 8 \\ 1,4 \\ 5,0 \\ 8 \\ 1,4 \\ 5,0 \\ 8 \\ 1,4 \\ 5,0 \\ 8 \\ 1,4 \\ 5,0 \\ 8 \\ 1,4 \\ 5,0 \\ 1,4 \\ 5,0 \\ 1,4 \\ 5,0 \\ 1,4 \\ 5,0 \\ 1,4 \\ 5,0 \\ 1,4 \\ 5,0 \\ 1,4 \\ 5,0 \\ 1,4 \\ 5,0 \\ 1,4 \\ 5,0 \\ 1,4 \\ 5,0 \\ 1,4 \\ 5,0 \\ 1,4 \\ 5,0 \\ 1,4 \\ 1,4 \\ 5,0 \\ 1,4 \\$	$ \begin{array}{c} 250 \\ \\ 490 \\ 20,0 \\ 40,0 \\ 42,0 \\ \\ 6000 \\ 1,3 \\ 6,0 \\ 8 \end{array} $

Примечание. Сопротивление в цепи сетки не должно превышать при фиксированном смещении 100 ком, при автоматическом — 150 ком.

		Смещение	
Электрические всличины	фвксир	автомати- ческое	
Напряжение на аноде, в	250 250	270 270	270 270
ке, в	-16	-17,5	125
сетке, в	32 120	35 134	40 134
 * * * напбольший, ма * * второй сетки, ма * * * * * наибольший, ма 	140 10,0 16	155 11,0	145 11,0
Внутреннее сопротивление, ком	24,5 5,5	17 23,5 5,7	17
Сопротивление нагрузки между ано- дами, ом Выходная наибольшая мощность, ет	5000	5000	5000
Коэффициент нелянейных искаже- вий, %	14,5 2	17,5 2	18,5 2

Режемы эксплуатации лампы 6ПЗС в двухтактном усилителе мощности класса А

Примечание. Сопротивление в цепи первой сетки ис должно превышать при фиксированном смещении 100 ком, при автоматическом — 150 ком.

Ориентировочный режим эксплуатации лампы 6113С в режиме усилителя мощности для генератора с посторонным возбуждением в классе С

Папряжение источника анодного питания, с 450
Напряжение смещения на первой сетке при сопротив-
лении в цели катода 500 ом. в
Напряжение на второй сетке при сопротивлении в цепи
второй сетки 17 кож, в само с с с с с с с с с 250
Аводный ток при наличии возбужаения, ма
Ток в цепи второй сетки, ма
мощность возбуждения, вт
Амилитуда напряжения возбуждения, в
Полезная выходная мощность, ет 20-25

В форсированном режиме, повышая напряжение на аноде до 500— 600 с, при напряжении на второй сетке 250 с, за счет снижения срока службы лампы можно снять мощность до 30—35 ст. В удвоителе частоты, повышая напряжение смещения на первой сетке до 80 с и увеличивая амплитуду напряжения возбуждения до 110 с, можцо сиять с лампы мощность на второй гармонике до 12 ст.

Ремяны эксплуатации лампы 6НЗС в двухтактном усвянтеле мощности класса AB₁

	Смещ	ение
Электрические величным	фиксиро- ваннос	автомати- ческое
Напряжение на аноде, в	360 270	360 270
• смещения на первой сетке, е Сопротивление в цепи катода, ом	-22,5 	250
Амплитуда сигнала между двумя сетка- ми, в	45 88	57 88
 » » » нанбольший, ма » » вторых сеток, ма 	132—140 5,0	100 5,0
 » » » » нанбольший, жа Сопротивление нагрузки между анода- мн, ож	5—11 6600—3800	9000
Выходная наибольшая мощность, <i>вт</i> Коэффициент нелинейных искажений, %	26,5-18,0 2	24,5 4

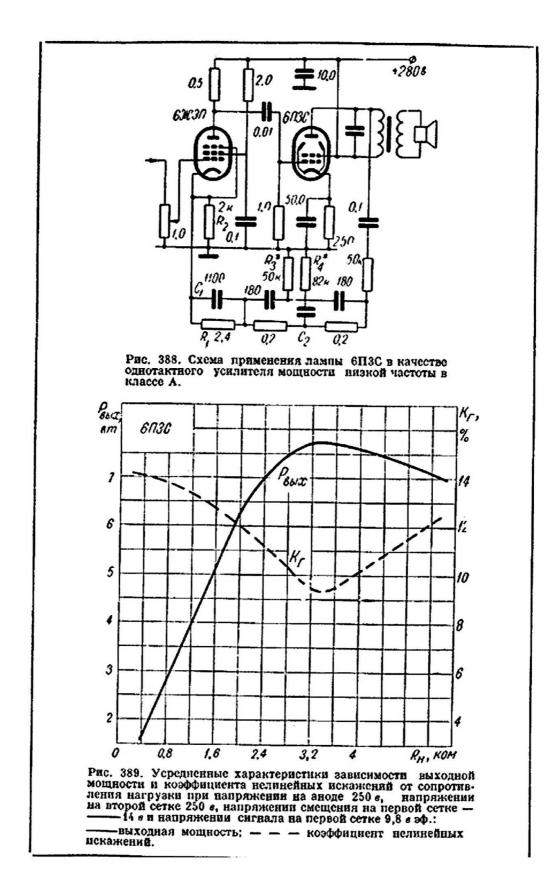

Примечание. Сопротивление в цепи первой сетки не должно превышать при фиксированном смещении 100 кож, при автоматическом — 150 кож.

Таблица 32

Режимы эксплуатации лампы 6ПЗС в двухтактном усилителе мощности класса AB₂*

	Реж	имы
Электряческие величины	II.a I	
Напряжение на аноде, в	360 225 18 52 78 142 3,5 11	360 270 22,5 72 88 205 5 16
Эффективное сопротивление нагрузки между анодами, ом Наибольшая выходная мощность, вт Коэффициент нелинейных искажевий, %	6000 31 2	3800 47 2

• Смещение на первую сетку фиксированное.

Хорошие результаты дает схема применения лампы 6ПЗС в сочетанни с пентодом 6ЖЗП (рис. 388). Ее можно применить и для выходного каскада вещательного приемника. Выходная мощность каскада до 4,5 ст при частотной характеристике от 60 до 8000 гч. На частоте

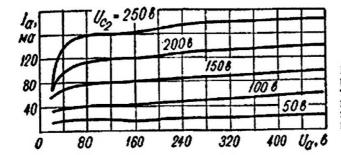
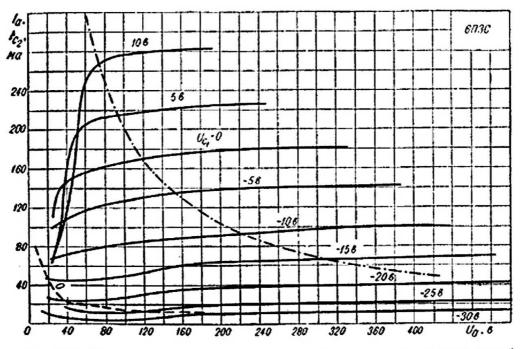
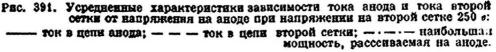




Рис. 390. Усредненные характеристики зависимости тока анода от напряжении на аноде при разных напряжениях на второй сетко и напряжении на первой сетке 0.

60 ги частотная характеристика имеет подъем 6 дб, а на частоте 8000 ги — до 12 дб.

Сопротивление R_1 регулирует подъем частотной характеристики в области низких частот. Конденсатор C_1 сдвигает низкочастотный пик характеристики в сторону большей или меньшей величины. Высокочастотный пик в области 8000 ги регулируется сопротивлением R_3 и конденсатором C_2 . Сопротивлением R_3 регулируется подъем характеристики в области 8000 ги.

При необходимости, вместо сопротивлений R_1 и R_3 можно установить переменные сопротивления и регулировать подъем частотной характеристики в области низких и высоких частот. Сопротивлением R_3

изменяют величину отрицательной обратной связи. Если нужно получить прямолинейную частотную характеристику, то из схемы исключают все элементы двойного Т-образного моста и вместо них между анодом лампы 6ПЗС и катодом 6ЖЗП включают сопротивление порядка 0,1 Мом. В этом случае, применяя качественный выходной трансформатор, можно получить частотную характеристику от 40-60 ги до 8-10 Key.

В схеме, изображенной на ряс. 388, выходной трансформатор имеет следующие данные: первичная обмотка 2500 витков намотана проводом ПЭЛ 0,2 мм; вторичная имеет 75 витков провода ПЭЛ 1,0 мм (для звуковой катушки динамика сопротивлением 3,5 ом); сечение сердечника 5-7 сж². Коэффициент нелинейных искажений в большой степени зависит от качества выходного трансформатора. При трансформаторе среднего качества коэффициент нелинейных искажений не превышает 4%.

ЛИТЕРАТУРА

Гликман С., Двухкиловаттный усилитель на базе ВУО-500, «Радно», 1952, Nº 11.

Демидасюк И., Передатчик начинающего коротковолновика, «Радно», 1960, № 3 н 1962, № 1.

Костанди Г. и др., Аппаратура для настройки УКВ приемников, «Радно», 1954, № 5. Туторский О., Коротковолновый передатчик, «Радно», 1950, № 1.

Цалюк М., Юденков И., Ультразвуковой паяльник, «Радио», 1958. M₂ 5.