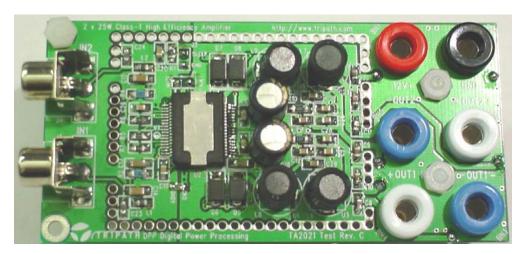


EB-TA2021B

2x25W Class-T Digital Audio Amplifier Evaluation Board using Digital Power Processing[™] Technology

Technical Information

Revision 5.2 October 2005

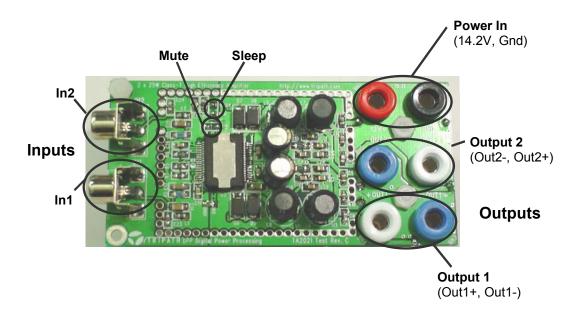

General Description

The EB-TA2021B Rev.D evaluation board is based on the TA2021B digital audio power amplifier from Tripath Technology. The board is designed to provide a simple and straightforward environment for the evaluation of the Tripath TA2021B. The board can be connected to a 14.2V supply using cables with standard banana connectors. Audio inputs are via standard RCA jacks. The TA2021B provides amplification for two channels of audio. Signal outputs are on four banana connectors to which any 4Ω or 8Ω passive speakers may be connected.

Features

- Class-T architecture
- ➢ Proprietary Digital Power Processing[™] Technology
- Requires single power source
- > Output Power @ V_{DD} = 14.2V
 - > 23.5W per channel (4 Ω , 10% THD+N)
 - 15.5W per channel (4Ω, 0.1%, THD+N)
- Easy engineering evaluation platform for Tripath Technology's TA2021B product
- Audiophile performance" typically:
 - 0.05% THD+N (13W, 4Ω)
 - 0.1% IHF-IM (1W, 4Ω)

- > Efficiency 88% (V_{DD} = 14.2V, 13.5W per channel, $R_I = 8\Omega$)
- MUTE and SLEEP inputs
- > Turn-on & turn-off pop suppression
- Intelligent short-circuit protection
- Intelligent over-temperature protection
- > Connects to any passive $4/8\Omega$ speakers
- Takes standard audio line output from any sound system
- Cost-effective 2-layer PCB design
- 36-pin Power SOP package


TA2021B Evaluation Board

Introduction

The EB-TA2021B Rev.D provides the designer a simple platform to evaluate the performance and functionality of the TA2021B 2x25W amplifier IC from Tripath Technology. The EB-TA2021B Rev.D is very simple to operate and requires only the following to evaluate:

- Stereo signal source
- 14.2V power supply (not to exceed 14.6V)
- Two loads (4-Ohm minimum)

For more information on the TA2021B, please refer to the TA2021B datasheet (www.tripath.com).

EB-TA2021B Rev.D Board

Connection and Operation

Figure 1 shows the connections required for proper operation of the EB-TA2021B Rev.D.

Input Connection

Audio input to the board is provided via two RCA female connectors.

Connector Name	Channel
IN1	Channel 1 Input
IN2	Channel 2 Input

Power Connection

The TA2021B requires a 14.2V power supply (14.6V max) to operate.

Power to the board is provided via the red and black female banana connectors. The positive 14.2V from the power supply connects to the red banana connector labeled 12V+. The ground connection of power supply attaches to the black banana connector labeled GND.

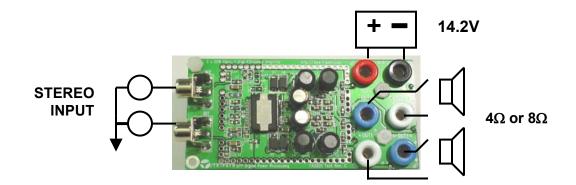


Figure 1: EB-TA2021B Rev.D Connections

Connector Label	Description	Color
12V+	Positive of the 14.2V Power supply	Red
GND	Negative (GND) of 14.2V Power	Black
	Supply	

Warning: Do not exceed Maximum Operating Supply Voltage of 14.6V

Output Connection

There are four female banana connectors on the evaluation board for speakers. Since the TA2021B has differential (bridged) outputs, it requires two wires per channel to connect each speaker. To ensure proper speaker polarity please follow the evaluation boards output connector color-coding.

Connector Label	Description	Color
Out1+	Positive output of Channel 1	White
Out1-	Negative output of Channel 1	Blue
Out2+	Positive output of Channel 2	White
Out2-	Negative output of Channel 2	Blue

Jumper Settings

There are two jumpers on the EB-TA2021B Rev.D board. Both of them should be connected (shorted) for normal operation. Jumper J1 connects the FAULT output to the MUTE pin, allowing the part to Mute itself when a Fault condition (over-current, etc.) is detected. Jumper J2 connects the SLEEP pin to GND, effectively disabling SLEEP for normal operation. If J2 is removed, the part will go into SLEEP mode.

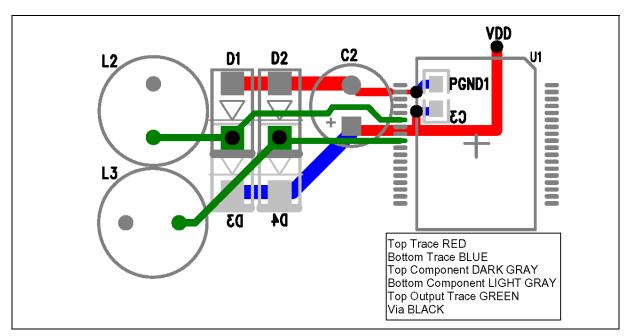
Jumper	Purpose
J1	Connects FAULT to MUTE
J2	Connects SLEEP to GND

Gain Settings

The TA2021B amplifier gain can be adjusted by modifying external resister values. R2 and R5 are used to set the gain for Channel 1, while R4 and R6 set the gain for Channel 2.

The equation for the gain setting is:

$$A_{V} = 12 \cdot \left(\frac{R_{f}}{R_{i}}\right)$$


Where,

For channel 1:
$$A_{V_{Ch1}} = 12 \cdot \left(\frac{R5}{R2}\right)$$
 For channel 2: $A_{V_{Ch2}} = 12 \cdot \left(\frac{R6}{R4}\right)$

For a more detailed description, please refer to the TA2021B data sheet.

Output Stage layout Considerations and Component Selection Criteria

Proper PCB layout and component selection is a major step in designing a reliable TA2021B power amplifier. The supply pins require proper decoupling with correctly chosen components to achieve optimal reliability. The output pins need proper protection to keep the outputs from going below ground and above VDD.

The above layout shows ideal component placement and routing for channel 1 (the same design criteria applies to channel 2). This shows that C3, a 0.1uF surface mount 0805 capacitor, should be the first component placed and must decouple VDD1 (pins 29 and 30) directly to PGND1 (pin35). C2, a low ESR, electrolytic capacitor, should also decouple VDD1 directly to PGND1. Both C2 and C3 may decouple VDD1 to a ground plane, but it is critical that the return path to the PGND1 pin of the TA2021B, whether it is a ground plane or a trace, be a short and direct low impedance path. Effectively decoupling VDD will shunt any power supply trace length inductance.

The diodes and inductors shown are for channel 1's outputs. D1, D3, and L2 connect to the OUTP1 pin and D2, D4, and L3 connect to the OUTM1 pin of the TA2021B. Each output must have Schottky or Ultra Fast Recovery diodes placed near the TA2021B, preferably immediately after the decoupling capacitors and use short returns to PGND1. These low side diodes, D1 and D2, will prevent the outputs from going below ground. To be optimally effective they must have a short and direct return path to its proper ground pin (PGND1) of the TA2021B. This can be achieved with a ground plane or a trace. Additionally, each channel must use Schottky or Ultra Fast Recovery diodes with short returns to VDD if the supply voltage exceeds 13.5V. These high side diodes, D3 and D4, will prevent the outputs from going above VDD. To be optimally effective they must have a short and direct return path to its proper VDD pin (VDD1) of the TA2021B. This can be achieved with a ground plane or a trace.

The output inductors, L2 and L3, should be placed close to the TA2021B without compromising the locations of the closely placed supply decoupling capacitors and output diodes. The purpose of placing the output inductors close to the TA2021B output pins is to reduce the trace length of the switching outputs. This will aid in reducing radiated emissions.

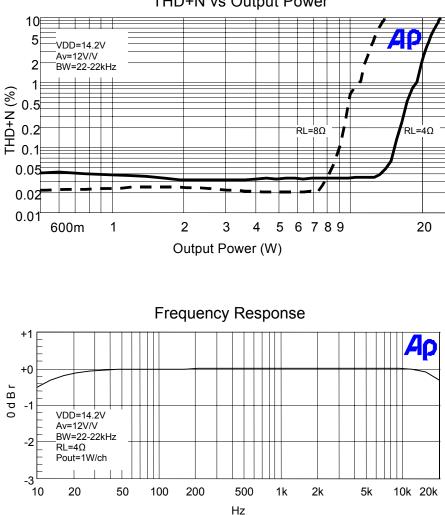
Please see the TA2021B data sheet and specifically the External Component Description section on page 6 for more details on the above-mentioned components. The TA2021's Application/ Test Circuit refers to the low side diodes as D_0 , The high side diodes as D_H , and both supply decoupling capacitors as C_{SW} .

Performing Measurements on the EB-TA2021B Rev.D

The TA2021B operates by generating a high frequency switching signal based on the audio input. This signal is sent through a low-pass filter that recovers an amplified version of the audio input. The frequency of the switching pattern is spread spectrum in nature and typically varies between 100kHz and 1MHz, which is well above the 20Hz – 20kHz audio band. The pattern itself does not alter or distort the audio input signal, but it does introduce some inaudible components.

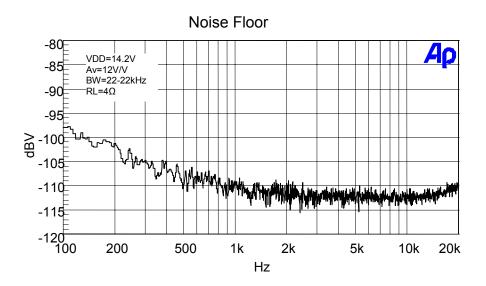
The measurements of certain performance parameters, particularly noise related specifications such as THD+N, are significantly affected by the design of the low-pass filter used on the output as well as the bandwidth setting of the measurement instrument used. Unless the filter has a very sharp roll-off just beyond the audio band or the bandwidth of the measurement instrument is limited, some of the inaudible noise components introduced by the TA2021B amplifier switching pattern will degrade the measurement.

One feature of the TA2021B is that it does not require large multi-pole filters to achieve excellent performance in listening tests, usually a more critical factor than performance measurements. Though using a multi-pole filter may remove high-frequency noise and improve THD+N type measurements (when they are made with wide-bandwidth measuring equipment), these same filters degrade frequency response. The EB-TA2021B Rev.D Evaluation Board has a simple two-pole output filter with excellent performance in listening tests.


(See Application Note 4 for more information on bench testing with Tripath Class-T amplifiers)

EMI and Shielding

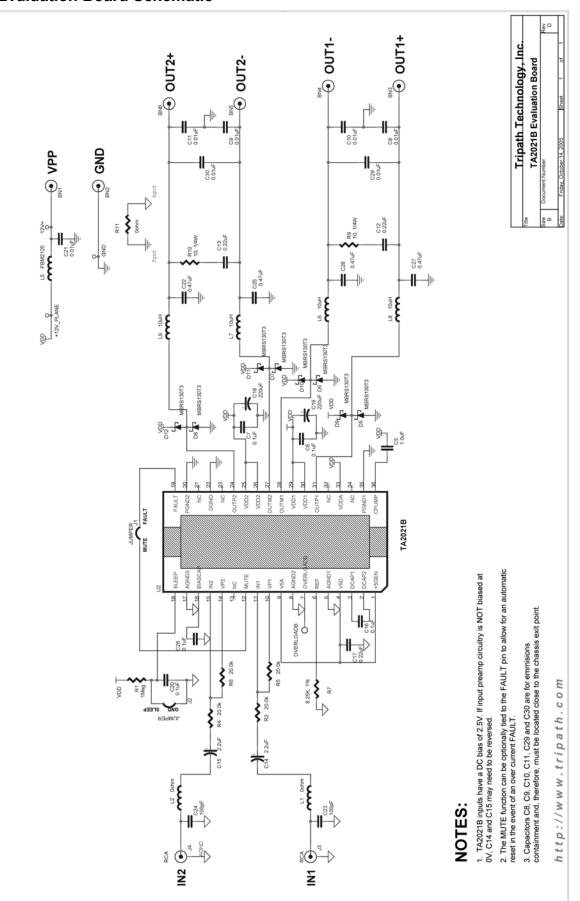
The TA2021B evaluation board has perforated holes around the amplifier and associated circuitry so that an EMI shield can be soldered directly to the board. Due to the spread-spectrum nature of the Class-T amplifier (the energy is spread across a wider spectrum, instead of being concentrated at a single frequency), we have found that specific EMI shielding is typically not necessary for most applications where the amplifier board is mounted inside a chassis. However, a shield perimeter is still provided for use in more sensitive applications.


(See Application Note 11 and Note 17 for more information on EMI)

Characteristic Curves

THD+N vs Output Power

Characteristic Curves (Continued)



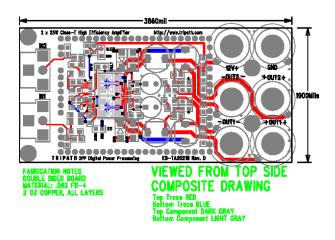
CONTACT INFORMATION

TRIPATH TECHNOLOGY, INC

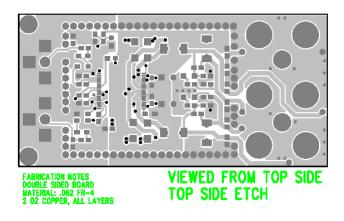
2560 Orchard Parkway, San Jose, CA 95131 408.750.3000 - P 408.750.3001 - F

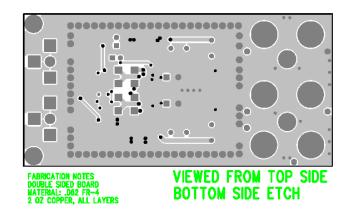
For more Sales Information, please visit us @ <u>www.tripath.com/cont_s.htm</u> For more Technical Information, please visit us @ <u>www.tripath.com/data.htm</u>

Evaluation Board Schematic

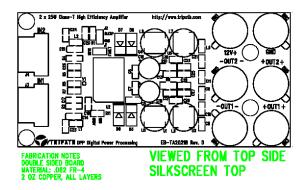

EB-TA2021B - KLI/5.2/10.05

BOARD REVISION: U	-										
Item Quantity	Reference	Value	PCB Footprint	tprint Rating	Tolerance/ Dielectric	Manufacturer	Manufacturer Part #	Source	Source Part #	unit price min g	unit price min qty Price Per Board
	BN1	VPP									\$0.000
		GND	BANANA								\$0.000
	BN3	OUT1+	BANANA								\$0.000
	BN4	OUT1-	BANANA								\$0.000
		OUT2-	BANANA								\$0.000
		OUT2+	BANANA								\$0.000
	C5	1.0uF	3216	>=16V	X7R	Murata	C1206C105K3RAC7800	Mouser	80-C1206C105K3R	\$0.034 10k	\$0.034
	7,C16,C20,C26	0.1uF	805	>=16V	X7R	Murata	GRM219R71C104KA01D	Digikey	490-1683-2-ND	\$0.010 24k	\$0.050
	C8,C9,C10,C11,C21,C29,C30 (0.01uF	805	>=16V	X7R	AVX Corp.	08055C103KAT2A	Digikey	478-1383-2-ND	\$0.013 24k	\$0.091
		0.22uF	805	>=16V	X7R	Epcos Inc.	B37941K9224K60	Digikey	495-1936-2-ND	\$0.012 12k	\$0.024
	C15.C14	2.2uF	3216	>=10V	X5R	Murata	GRM319R61A225KA01D	Digikev	490-1815-2-ND	\$0.040 24k	\$0.080
		0.22uF	1206WS	>=16V	X7R	Epcos Inc.	B37941K9224K60	Digikey	495-1936-2-ND		\$0.012
	C18.C19	220uF	cape\150\300	>=16V	20%		EEU-FM1E221	Panasonic	EEU-FM1E221	\$0.045 1K	\$0.090
	C27.C28	0.47uF	805	>=16V	X7R	Epcos Inc.	B37941K9474K60	Digikev	I 1		\$0.084
		100pF	805	>=10V	NPO	BC Components		Diaikev	BC1268TR-ND		\$0.012
	7.D8.D9.D10.D11.D12	MBRS130T3	MBRS130T3	30V	1A	On Semi	MBRS130T3	Diaikev	MBRS130T3OSTR-ND	\$0.069 100k	\$0.552
	11	MUTE FAULT	SIP-2P								\$0.000
		GND SLEEP	SIP-2P								\$0.000
	13	IN1	RCA								\$0.000
		IN2	RCA								\$0.000
	L1,L2,R11 (Oohm	805				ERJ-6GEY0R00V		P0.0ATR-ND		\$0.000
	L5 L5	FBM2125	805	4A		Panasonic	EXC-ML20A390U	Digikey	P10191TR-ND	\$0.080 24k	\$0.080
		10uH	IND200/400	2A	10%	Toko	822LY-100K (type 8RHB2)) Toko	822LY-100K (type 8RHB2)	\$0.086	\$0.344
		1Meg	805			Yageo	9C08052A1004JLHFT	Digikey	311-1.0MATR-ND	\$0.002 100k	\$0.002
	R2,R4,R5,R6	20.0k	805		1%	Yageo	RC0805FR-0720KL	Digikey	311-20.0KCRTR-ND	\$0.003 100k	\$0.012
	R7 8	8.25K, 1%	805		1%	Yageo	RC0805FR-078K25L	Digikey	311-8.25KCRTR-ND	\$0.003 100k	\$0.003
	R10,R9	10, 1/4W	1206	1/4W	5%	Yageo	RC1206JR-0710RL	Digikey	311-10ERTR-ND	\$0.003 100k	\$0.006
	U2	TA2021B	CTI 6016 036 1	036 105C 112B SLUGUP	GUP						
	V1 (OVERLOADB	VIA-1P								
Alternate Low	Alternate Low Pass Filter Inductors (L6, L7, L8, L9)	L9): T	la di minana	toron O O Poted	Matan	Taco	VITTANIO MIMIM	OTCH		CONTACT MED	c
Datatronic	PT21707	same	10uH	1.90Amax	unshielded		100k	NOICO	Jamie Hopper- (951)-928-7700 x770 OR iamie hopper@datatronics.com	700 x770 OR jamie	hopper@datatronics.com
Toko	20K	8RHT2	10uH	1.96Amax	unshielded bobbin inductor \$0.09	rr \$0.09	100k	negotiable	I_	DR bnau@tokoam.c	mo
Toko		8RHB2	10uH	1.96Amax	unshielded bobbin inductor	r.			I 1		
		RL622	10uH	3.00Amax	unshielded bobbin inductor				Debbie Hocker-(714)-999-9555 OR debbieh@inductorsupply.com	1555 OR debbieh@i	nductorsupply.com
Toko	A7040HN-100M	8RDY	10uH	2.6Amax	shielded bobbin inductor						


	S.com						
CONTACT INFO.	Jamie Hopper- (951)-928-7700 x770 OR jamie_hopper@datatronics.com	negotiable Bob Nau- (619)-656-8966 OR bnau@tokoam.com		Debbie Hocker-(714)-999-9555 OR debbieh@inductorsupply.com			
NOTES		negotiable					
MINIMUM QUANTITY NOTES	100k	100k				100k	
COST	\$0.07	\$0.09				\$0.16	
Notes	unshielded bobbin inductor \$0.07	inshielded bobbin inductor \$0.09	inshielded bobbin inductor	unshielded bobbin inductor	shielded bobbin inductor	shielded SMT inductor \$0.16	
Inductance Rated DC Current	1.90Amax u	1.96Amax u	1.96Amax u	3.00Amax u	2.6Amax sl	2.9Amax sl	
Inductance	10uH	10uH	10uH	10uH	10uH	10uH	
Type	same	8RHT2	8RHB2	RL622	8RDY	DS86C	
 Part Number	PT21707	822LY-100K	822MY-100K	RL622-100K	A7040HN-100M	B992AS-100M	
Manufacturer	Datatronic		Toko	ISI	Toko	Toko	


Evaluation Board Bill of Materials

Evaluation Board Layout (Composite)



Evaluation Board Layout (Etch)

Evaluation Board Layout (Silkscreen)

